Exploring the origins of nitrogen on terrestrial worlds

Tom Rice

University of Michigan

Edwin Bergin, Jes Jørgensen

8 November 2017 Nitrogen Fractionation in Space – Copenhagen

Earth's nitrogen and carbon were likely delivered by chondrites

Chondrites have "hot spots" of D, ¹⁵N enrichment

Veins of "insoluble organic matter" (IOM) contain most C, N in these meteorites

Isotopic ratios give hints to history & formation

Fig. 2. Images of an area of QUE 99177 (CR2) matrix: (a) a secondary electron scanning electron micrograph, (b) a N isotope ratio map, (c) a C isotope ratio map, and (d) a H isotope ratio map. The isotopic maps were all measured by NanoSIMS. A relatively large ¹⁵N- and D-rich "vein" of organic matter is visible. Arrow in (c) indicates a highly ¹³C-enriched presolar SiC grain with no obvious spatial relationship to the organic matter.

C.Alexander et al. 2017 Chemie der Erde

Candidate precursors to N in IOM: organic N carriers, and NH₃

• Atomic N, molecular N_2 are too volatile to contribute much to formation of solids

Exploring the origins of nitrogen

Accounting the N in organics in high-mass hot cores

Modeling HCN abundance & emission in a famous low-mass protostar

My dissertation: HCN abundances around 5 protostars with interferometry

Exploring the origins of nitrogen

Accounting the N in organics in high-mass hot cores

Modeling HCN abundance & emission in a famous low-mass protostar

My dissertation: HCN abundances around 5 protostars with interferometry

Orion KL: nearest chemically rich high-mass hot core

A "hot core" of high-temperature gas

Perfect target for molecular line emission studies

Studied in depth by Herschel, e.g. in Crockett et al. (2014, 2015) and Plume et al. (2012)

Herschel observed Orion KL in depth, producing a rich spectrum (1% shown here)

Crockett+14 modeled Orion KL's Herschel spectra, measuring abundances for 39 molecules

- NH₂CHO
- SiS
- C₂H₅OH
- H₂CS
- NO
- NS
- **SO**, ³⁴SO, ³³SO, S¹⁸O
- **SO**₂, ³⁴SO₂, ³³SO₂
- HCN, H¹³CN, HC¹⁵N
- HNC, H¹⁵NC, HN¹³C
- SiO
- CH₃CN, ¹³CH₃CN, CH₃¹³CN
- NH₃, ¹⁵NH₃, NH₂D
- **HCI**, H³⁷Cl
- H₂S, H₂³³S, H₂³⁴S
- H₂CO, H₂¹³CO, HDCO

- HCOOCH₃
- CCH
- CN
- HC₃N
- H₂O, HDO, HD¹⁸O, D₂O, H₂¹⁸O, H₂¹⁷O
- CH₃OH, ¹³CH₃OH, CH₃OD, CH₂DOH
- C₂H₅CN
- HNCO, HN¹³CO
- HCS⁺
- H₂CCO
- OCS
- CH₃OCH₃
- **CS**, C³⁴S, C³³S, ¹³CS
- CO, ¹³CO, C¹⁷O, C¹⁸O
- HCO⁺

We made an inventory of organic carriers of N in Orion KL

(Zernickel+I2)

In the high-mass hot core NGC6334I, again most organic N is in HCN

Rice et al., in prep.

HCN is the main organic carrier of N in high-mass hot cores

 HCN contains 65–98% of N in organic carriers

Exploring the origins of nitrogen

Accounting the N in organics in high-mass hot cores

Modeling HCN abundance & emission in a famous low-mass protostar

My dissertation: HCN abundances around 5 protostars with interferometry

IRAS 16293: Low-mass protostar, astrochemical laboratory

- d ~ 120 pc
 - Well-studied by single-dish ground-based studies (TIMASS), space (CHESS/ Herschel), and ALMA (PILS)

(Caux+11, Ceccarelli+10, Jørgensen+16)

I reduced the CHESS HIFI spectrum and measured HCN, H¹³CN, HC¹⁵N lines

We adopted sph. symmetric physical model parameters from Crimier+10

Modeling approach: Transphere + Ratran

Last login: Sun Nov 5 15:41:14 on ttys009 → ~ cd Documents/Code/coutens_model_h13cn → coutens_model_h13cn git:(master) × ipython --pylab %Python 3.6.0 |Anaconda custom (x86_64)| (default, Dec 23 2016, 13:19:00) Type "copyright", "credits" or "license" for more information.

IPython 5.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
runUsing matplotlib backend: TkAgg

In [1]: %run

Transphere (C. Dullemond): given a density structure and stellar parameters, reproduce temperature structure

Ratran

(M. Hogerheijde & F. van der Tak): given temps, densities, abundances, solve molecular population states & ray-trace line emission

We model the emission, varying inner & outer HCN abundances

We derive an abundance structure with a $30 \times \text{increase}$ where T > 60 K

We see ¹⁵N enrichment in the high-J lines (model-independent)

The abundance jump plus selective ¹⁵N enrichment suggests ice HCN formation

Exploring the origins of nitrogen

Accounting the N in organics in high-mass hot cores

Modeling HCN abundance & emission in a famous low-mass protostar

My dissertation: HCN abundances around 5 protostars with interferometry

Further work on protostars with NOEMA, ALMA, IRAM-30m, and VLA

Targets: 5 protostars in Perseus (d~230pc)

name — luminosity (L_{sun})

- LI455-IRSI 7.0
- LI455-IRS4 3.1
 - BI-a I.3
- IRAS03235 I.9
 - B5IRS1 4.7

Description of data

- IRAM 30m— Ix H¹³CN, HC¹⁵N I-0, 3-2
- NOEMA 8x 🖉 @ I.5" H¹³CN, HC¹⁵N I-0, **3-2***
- ALMA $40x \Re_{@} 0.3$ " $H^{13}CN, HC^{15}N$ 3-2
- VLA $27x \aleph_{@} 1.5$ " NH₃ (1,1)–(5,5)

Data x targets

	IRAM 30m	NOEMA (shallow)	NOEMA (deep)	ALMA	VLA
LI455-IRSI	Yes	Yes	Yes	Yes	Yes
L1455-IRS4	Yes	Yes	No	No	No
BI-a	Yes	Yes	No	No	No
IRAS03235	Yes	Yes	No	No	No
B5IRS1	Yes	Yes	No	No	No

Maps from ALMA

Maps from ALMA

Exploring the origins of nitrogen

Accounting the N in organics in high-mass hot cores

Modeling HCN abundance & emission in a famous low-mass protostar

My dissertation: HCN abundances around 5 protostars with interferometry

Something interesting is going on with HCN, so let's see where it takes us.