

¹⁵N Fractionation in Infrared Dark Cloud Cores

Shaoshan (Sandy) Zeng, Izaskun Jiménez-Serra, Giuliana Cosentino, Serena Viti, Ashley Barnes, Jonathan Henshaw, Paola Caselli, Francesco Fontani, Piere Hily-Blant

Zeng et al. 2017 A&A 603, A22 arXiv:1705.04082

NITROGEN FRACTIONATION IN SPACE Niels Bohr Institute and Centre for Star and Planet Formation at University of Copenhagen 2017 November 8-9

Nitrogen fractionation

Interstellar ratios spread in a wide range !

Origin of N-fractionation is poorly constrained !

The ¹⁴ N/¹⁵ N isotopic ratio has been measured across different astronomical environments:

 <u>Small Solar System bodies</u> e.g. comets, meteorites, interplanetary dust particles (IDPs) (*Bockelée-Morvan et al. 2008, Manfroid et al. 2009, Floss et al. 2006, Alexander et al. 2007*)

o **Protoplanetary disks and Planets**

(Junk & Svec 1958, Hoffman et al. 1979, Fouchet et al. 2004, Wong et al. 2013, Guzmán et al. 2017)

- Low-mass prestellar/starless cores and protostars
 (Lis et al. 2010; Bizzocchi et al. 2013; Hily-Blant et al. 2013, Wampfler et al. 2014)
- High-mass regions with relatively active star-forming activities (Adande & Ziurys 2012, Fontani et al. 2015, Colzi et al. 2017)

Nitrogen fractionation

The Birthplace of our Solar System ?

Most likely a <u>high-mass</u> <u>star cluster</u> containing at least 1000 stars with a few massive stars.

(Adams+2010; Dukes & Krumholz 2012; Pfalzner+2013)

Establish how N-fractionation is transferred from the pristine conditions to the subsequent stages of planetary system formation Nitrogen chemistry depends on the temperature and density of the primordial gas in the parental cloud (*Roueff et al. 2015*)

IRDCs cores show T_{kin} 5-10 K + Densities ~ a factor of 10 higher than low-mass regions

Dependence of N-fractionation on T_{kin} and density

IRDCs: general properties

Infrared Dark Clouds (IRDCs)

- Observed against the bright diffuse emission at mid-IR wavelength
- Cores = coldest and densest region
 within <u>Giant Molecular Clouds</u>
- <u>Physical conditions resembling the</u> <u>early stages of the Solar System</u> <u>formation</u>
- <u>**T**_{kin}</u> = **15 20 K** (Pillai et al. 2006)
- <u>n_H ≈ 10⁵ cm⁻³</u> (Bulter & Tan 2012)
- <u>H₂ column densities > 10²² cm⁻²</u> (Av~100 mag) (Kainulainen & Tan 2013)

- Active/Star-forming (masers/mid-IR/UC HIIs)
- o Intermediate
- Quiescent/Starless

(Chambers et al. 2009, Rathborne et al. 2010)

IRDCs: our sample

- Selected from the IRDCs sample studied by *Rathborne et al. 2006*
- 10 of these clouds (studied in Bulter & Tan 2012) are with different selected morphologies with and different levels of starformation activity based on the detection of $24\mu m$ and 8µm sources
- 4 IRDCs are targeted in this study:

IRDCs	l [°]	b [°]	V _{LSR} [kms ⁻²]	$\Sigma(\text{sat}) [\text{gcm}^{-2}]$	М [М _О]
C(G028.37+00.07)	28.373	0.076	78.6	0.520	45000
F(G034.43+00.24)	34,437	0.245	57.1	0.370	4460
G(G034.77-00.55)	34.771	-0.557	43.5	0.347	2010
H(G035.39-00.33)	35.395	-0.336	44.7	0.416	13340

٩

Mass surface density maps of targeted clouds and cores (Butler & Tan, 2012)

IRAM-30m telescope

Observation & Analysis

H¹³CN

GILDAS-CLASS software package

HCN

- Assuming LTE conditions and optically thin emission, $T_{ex} = 15K$
- Adopting Galactic gradient of ¹²C/¹³C ratio infer from CN (*Milam et al.* 2005)

HNC

¹²C/¹³C ratio calculated for each targeted IRDC regarding their galactocentric distance:

HN¹³C

H¹⁵NC

IRDCs	R _{gc} [kpc]	¹² C/ ¹³ C
C(G028.37+00.07)	4.65	40.2
F(G034.43+00.24)	5.74	46.8
G(G034.77-00.55)	6.24	49.8
H(G035.39-00.33)	6.27	50.0

Examples of molecular spectra (Zeng et al. 2017)

No correlation between HCN and HNC isotopologues

and level of star formation in IRDCs cores

(Zeng et al. 2017)

No correlation between HCN and HNC isotopologues

and level of star formation in IRDCs cores

(Zeng et al. 2017)

Comparison: literature studies

HCN: ~70 -- ≥763 HNC: ~161 -- ~ 541

Terrestrial Atmosphere (TA) = 272 (Junk & Svec 1958) Proto-solar Nebula (PSN) = 440 (Marty et al. 2011)

Propose idea:

Density of the parental molecular gas may be the governing parameter of nitrogen fractionation in IRDCs

> **Cloud G** shows relatively low ¹⁴N/¹⁵N ratio (70 – 293) compared to other IRDCs.

Properties of Cloud G itself

- Least massive
- Lowest gas density
- o Most diffuse
- No trace of starformation activity

(Zeng et al. 2017)

Comparison: chemical model

Model predictions: (Roueff et al. 2015)

- T = 10 K
- \circ n_H = 2 x 10⁵ cm⁻³
- Significant ¹³C depletion at evolution time ~ 1M yrs

- Up to a factor of 2 difference depends on the molecule
- We are using ¹²C/¹³C ratio inferred from CN to derive ¹⁴N/¹⁵N in HCN and HNC isotopologues
- Affect our derived ¹⁴N/¹⁵N ?
- Misleading conclusion on nitrogen fractionation in IRDCs?

Comparison: chemical model

Direct measurement on HCN and its ¹⁵N isotopologue

	¹⁴ N/ ¹⁵ N		
Core	HCN HC ¹⁵ N	$\frac{H^{13}CN}{HC^{15}N}$	
G1	43±9	70±28	
G3	≥67±3	≥181±54	
H2	≥282±5	≥366±132	
H3	263±49	458±98	
H4	121±24	142±34	
H5	259±57	395±97	

- Model predictions: (Roueff et al. 2015)
 - T = 10 K
 - \circ n_H = 2 x 10⁵ cm⁻³
 - Significant ¹³C depletion at evolution time ~ 1M yrs

Our Case for IRDCs:

- \circ T = 15 20 K (*Pillai*+2006)
- $n_{H} \approx 10^{5} \text{ cm}^{-3}$ (Bulter & Tan 2012)
- Time-scale for IRDC cores ≈10⁵ yrs (Kong et al. 2017)

i) Time-scales (age) of IRDCs cores

Results: ¹⁴N/¹⁵N ratios are either consistent, or lower than those measured from the ¹³C isotopologues

ii) Kinetic temperature of the gas within IRDCs

Perspective

<u>Measuring the nitrogen fractionation as a</u> <u>function of Galactocentric distance using</u> <u>Planck Galactic cold clumps (PGCCs)</u>

- Single-dish observations with IRAM 30m telescope
- Sample of dense PGCCs distributed across the Galactic disk (*Zahorecz et al. 2016*)
- > Tracers: N_2H^+ , CN, and HNC and their ¹⁵N isotopologues

1. To estimate the ¹⁴ N/¹⁵ N ratio and its gradient in the Galaxy using different N-bearing species

2. Provide an insight into the chemical fractionation of Nitrile- (CN) and Hydride-(NH) bearing molecules