

<u>Victor S. Magalhães</u>, Pierre Hily-Blant, Alexandre Faure, François Lique

Nitrogen Isotopic Ratio From Prestellar Cores To Disks

¹⁴N/¹⁵N in the Solar system

- The ¹⁴N/¹⁵N ratio displays a wide range of variations in the Solar System, from 50 to 440.
- Remarkably all comets show approximately the same ¹⁴N/¹⁵N ratio independent of carrier:
 - > ${}^{14}N/{}^{15}N = 144 \pm 3$ (Hily-Blant 2017).
- This value is one third of the ¹⁴N/¹⁵N ratio of the bulk.
- Nitrogen in comets comes from a minor reservoir already separated at the PSN stage.

¹⁴N/¹⁵N in protoplanetary disks

- ¹⁴N/¹⁵N has been measured in a few disks with ALMA:
 - $C^{14}N/C^{15}N = 323 \pm 30$ (Hily-Blant 2017).
 - HCN/HC¹⁵N = 111 ± 19 (Hily-Blant 2017 & Guzman 2017).
- These values show us that we have two reservoirs of nitrogen in protoplanetary disks:
 - Remarkably the ratio between the two reservoirs is 3 just as in the Solar system.

¹⁴N/¹⁵N in the local ISM

¹⁴N/¹⁵N measurements in the ISM display a large range of values from ~120 to ~1200.

¹⁴N/¹⁵N Measurements in the local ISM

¹⁴N/¹⁵N in the local ISM

- ¹⁴N/¹⁵N measurements in the ISM display a large range of values from ~120 to ~1200.
- The lowest values being usually measured in nitriles (HCN or HNC).

HCN/HC¹⁵N measurements

¹⁴N/¹⁵N in the local ISM

- ¹⁴N/¹⁵N measurements in the ISM display a large range of values from ~120 to ~1200.
- The lowest values being usually measured in nitriles (HCN or HNC).
- Of these two, HCN is the most desirable target:
 - It has a resolved hyperfine structure, which distributes the optical depth.
 - Problem: the hyperfine structure presents hyperfine anomalies.

Measuring HCN/HC¹⁵N

- Most HCN/HC¹⁵N use the double isotopologue method:
 HCN/HC¹⁵N = H¹³CN/HC¹⁵N x ¹²C/¹³C
- Problem: observations and modelling do not agree on the fractionation of carbon in HCN.
 - Observations suggest HCN is rich in ¹³C (Daniel 2013)
 - Models predict HCN is poor in ¹³C (Roueff 2015)
- Solution: measure HCN/HC¹⁵N and HCN/H¹³CN directly!
- Target: L1498 a well studied prestellar core (Tafalla 2004&2006)

Hyperfine Anomalies of HCN

- Phenomenon: HF components not consistent with a single excitation temperature.
- Origins: Radiative trapping caused by HF overlap, which leads to radiative pumping of specific HF levels (Guilloteau 1981).
- Consequences: HCN HF ratios are sensitive to column density, velocity field and line width (Gonzalez-Alfonso 1993).
- Solution: Treat hyperfine overlap at the excitation level (Daniel 2008)

HCN J=1 \rightarrow 0 anomalies contrasted with H¹³CN J=1 \rightarrow 0

Modelling the HCN, $H^{13}CN$ and $HC^{15}N$ emission of L1498

We obtained a density profile by fitting the density and dust temperature to a cut on the continuum maps. **Continuum emission:**

$$I_{\nu} = 2 \int \kappa_{\nu} n_{\rm H_2}(x) \mu_{\rm H_2} m_{\rm H} B_{\nu} [T_{\rm d}(x)] dx$$

H₂ density:

$$n_{\rm H_2}(r) = \frac{n_0}{1 + (r/r_0)^{\alpha}}$$

Dust temperature: $T_{\rm d}(r) = T_{\rm in} + \frac{T_{\rm out} - T_{\rm in}}{2} \left(1 + \tanh \frac{r - r_d}{\Delta r_d}\right)$

Dust opacity:

$$\kappa_{\nu} = \kappa_{250} (\lambda/250 \ \mu \mathrm{m})^{-\beta}$$

Fitting the dust emission

Fits to the continuum emission of L1498

Continuum fit results

Parameter	Value	Unit
n ₀	$1.00 \pm 0.16 \times 10^{5}$	cm-3
r ₀	47±6	arcsec
a	2.2±0.1	
T _{in}	9.8±0.5	K
T _{out}	14.6±0.3	K
r _d	61±3	arcsec
Δr_d	26±10	arcsec
β	1.56±0.04	

Radiative transfer model of L1498

- We obtained a density profile by fitting the density and dust temperature to a cut on the continuum maps.
- The remaining parameters we need to consider:
 - Velocity field: 3 parameters
 - Non thermal dispersion: 4 parameters
 - Abundance of HCN: 3 parameters
 - Abundance of the rare isotopologues: 2 parameters

Exploration of the parameters with MCMC

- This is a parameter space with 12 dimensions.
- We needed a efficient way to explore this parameter space.
 - We chose the EMCEE implementation of the Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler.
- Result: Calibration-limited HCN isotopologue ratios and precise physical conditions.

HCN abundance:

$$X(r) = \begin{cases} \frac{X_0}{\eta} & \text{if } r < r_1 \\ \frac{X_1}{\eta} & \text{if } r \ge r_1 \end{cases}$$
Velocity Field:

$$V(r) = V_c e^{-\frac{(r-r_V)^2}{2\Delta r_V^2}}$$
Non thermal velocity dispersion:

$$\sigma_{nth}(r) = \sigma_0 + \frac{\sigma_{ext} - \sigma_0}{\pi} \left[\frac{\pi}{2} + \tanh\left(\frac{r-r_j}{\Delta r_j}\right) \right]$$
HCN abundance, velocity and non thermal dispersion

Continuum fit results

Parameter	Value	Unit
n _{ext}	500	cm ⁻³
T _{kin}	10	K
Vc	-0.26±0.02	kms
r _V	290±8	arcsec
Δr_V	55±8	arcsec
σ ₀	0.046±0.03	kms
σ_{ext}	0.25±0.08	kms

Continuum fit results

Parameter	Value	Unit
r _j	320±14	arcsec
Δr _j	78±14	arcsec
X ₀	2.6±0.2x10 ⁻⁹	
X ₁	6.1±0.4x10 ⁻⁹	
۲ ₁	33±8	arcsec
η(H ¹³ CN)	45±3	
η(HC ¹⁵ N)	338±28	

Velocity field and non thermal dispersion in L1498

Implications of the measured velocity field

- Derived velocity field (Collapse outside) consistent with early evolutionary states of PSCs (Lesaffre 2005).
- A similar velocity field was recovered for L694-2 and L1197 (Lee 2007).
 - In both cases HCN J→0 emission was well reproduced under this kind of profile.

Best fit HCN J= $3 \rightarrow 2$ towards L1498

Best fit HCN J= $1 \rightarrow 0$ towards L1498

Best fit H¹³CN J=1 \rightarrow 0 towards L1498

Best fit HC¹⁵N J=1 \rightarrow 0 towards L1498

Accurate HCN isotopic ratios in L1498

- $HCN/HC^{15}N = 338 \pm 28$
- $HCN/H^{13}CN = 45 \pm 3$
- $H^{13}CN/HC^{15}N = 7.5 \pm 0.8$
- Uncertainties ~10%, comparable to calibration uncertainties.
- Uncertainties due to collisional rates:
 - Mitigated by the latest HCN-H₂ HF collisional rates (Lique et al. in preparation).

Implications

► H¹³CN/HC¹⁵N consistent with Ikeda 2002.

- Which suggest that single T_{ex} H¹³CN/HC¹⁵N measurements are valid.
- ► HCN/H¹³CN smaller than 70.
 - Inconsistent with chemical models (HCN/H¹³CN 90-140 Roueff 2015).
 - Fractioning in C in the same sense as in Daniel 2013 (HCN/H¹³CN = 30 ± 7)

Applying HCN/H¹³CN in L1498 to previous H¹³CN/HC¹⁵N

- HCN/HC¹⁵N in L1544 becomes 157±37 (H¹³CN/HC¹⁵N = 3.5±0.8, Hily-Blant 2013)
- HCN/HC¹⁵N in L183 becomes 131±29 (H¹³CN/HC¹⁵N = 2.9±0.6, Hily-Blant 2013)
- This values agree with the value measured by Daniel 2013 in B1.
- L1498 is less evolved than L1544:
 - ▶ Is H¹³CN/HC¹⁵N a time dependant quantity?

Conclusions

- HCN is not fractionated in nitrogen in L1498.
- ► HCN J=3→2 spectra were fundamental in determining the velocity field.
- L1498 is in an early evolutionary stage for a PSC (n₀(H₂)~10⁵ cm⁻³, collapse outside).
- HCN is heavily fractionated in carbon in L1498.
- ► H¹³CN/HC¹⁵N smaller in evolved PSCs (L1544)
 - Is this due to carbon or nitrogen fractionation?
 - Answer in more direct measurements of HCN/ HC¹⁵N in PSCs