Isotopic reservoirs of interstellar nitrogen

Recent results and new questions

Pierre Hily-Blant November 8-9th 2017

Institut Universitaire de France Université Grenoble Alpes pierre.hily-blant@univ-grenoble-alpes.fr

Collaborators

A. Faure (IPAG), V. Magalhaes de Souza (IPAG), G. Pineau des Forêts (Obs. de Paris), J. Kastner (Rochester, USA), T. Forveille (IPAG), C. Qi (CfA, USA)

Introduction

The message from comets

Bockelée-Morvan et al. (2015); Hily-Blant et al. (2017b)

- Cometary ratio: $\langle \mathcal{R} = {}^{14}\mathrm{N}/{}^{15}\mathrm{N} \rangle = 144\pm3$
- No dependence on comet type

The D/H in comets

 D/H shows large variations in comets

Evidences

- Bulk: protosun, Jupiter: $\mathcal{R} = 441 \pm 6$ (Marty et al. 2011)
- Comets: trace a secondary, widespread, reservoir
- Earth atmosphere: $\mathcal{R}=272$
- Large variations in the solar system: N is sensitive to ... something; could be a fantastic tool

Questions

- Where did comets form ?
- Is there any trace of the bulk reservoir in comets ?
- Origin of nitrogen on Earth ?
- Several reservoirs: when, where, and how ?

Molecular clouds

All stars and planets form in molecular clouds

From cores to protostars to disks

• prestellar cores: chemical factory

From cores to protostars to disks

- prestellar cores: chemical factory
- Protostars: fraction of ices evaporating during protostellar phase is unclear; at most 10-20%? (van Dishoeck et al. 2014)

10

The interstellar heritage of planetary systems

Interstellar phase

Primitive solar system

- PSN stage: major reset of chemistry ?
- Are cometary ices inherited from the prestellar phase ? (Rosetta results on O₂ and S₂)
- To which extent are interstellar-chemistry products preserved into planetary systems ?

Origin of the isotopic reservoirs in the PSN

- Interstellar: molecular clouds, prestellar cores, protostars
 - chemical fractionation: ZPE defects; questionable (Roueff et al. 2015)
 - selective photodissociation: inoperant at $A_{\rm V}\sim 10 {\rm mag}$
 - exchange in ices (known for ${\rm H}/{\rm D}$ in methanol, e.g. Faure et al 2015) ?
- In situ, within the PSN
 - selective photodissociation (Heays et al. 2014); potentially efficient
 - chemical fractionation: heavy freeze-out where T are low; inefficient
 - exchange in ices: unknown
- Posterior to formation of bodies
 - exchange in ices: unknown

Following the trail of volatiles

Challenges

- Major elemental reservoirs not visible (N, O, S): rely on trace species and chemical models
- Heavy/complete depletion (Walmsley et al. 2004; Friesen et al. 2014): how to follow unvisible volatile reservoirs ?
- Strategy: use isotopic ratios to identify the reservoirs

Problems

- Elemental volatile reservoirs of the main elements (C, N, O, S) are poorly known: uncertainties in model predictions
- Chemical fractionation in dark clouds: open issue
- Impacting issues: oxygen and sulfur chemistry

13

- What is the present-day $^{14}\mathrm{N}/^{15}\mathrm{N}$ isotopic ratio in the local ISM ?
- Evince two isotopic reservoirs in protoplanetary disks
- Isotopic reservoirs in prestellar cores

$^{14}\mathrm{N}/^{15}\mathrm{N}$ in protoplanetary disks

The $^{14}\mathrm{N}/^{15}\mathrm{N}:$ overview

15

$^{14}N/^{15}N$ in HCN in disks: MWC 480

- MWC 480: Herbig Ae star, d = 140 pc
- Guzmán et al. (2015): $H^{13}CN/HC^{15}N=2.8\pm1.4$, $\mathcal{R}=200\pm110$
- using our method: $H^{13}CN/HC^{15}N$ 1.9 \pm 0.4, \mathcal{R} =132 \pm 24
- Guzmán et al. (2017): 1.8 \pm 0.3, R=142 \pm 59

17

The nitrogen ratio in disks

- ALMA: $\langle {\rm H^{13}CN/HC^{15}N}\rangle = 1.6\pm0.1$ (Guzmán et al. 2017)
- Assuming HCN/H¹³CN=70 \Rightarrow (HCN/HC¹⁵N)=111 \pm 19

Fractionated reservoir: in situ origin

- Fractionated reservoir in disks
- Ratio in HCN close to that of solar system comets
- Proposed explanation (Guzman): selective photodissociation of N₂ in the PSN (Heays et al. 2014) \Rightarrow No interstellar origin

Caveats

- Double-isotopic ratio: indirect determination
- Disk sample: different masses (X-UV flux) and ages (dust size) but uniform ratio: compatible with selective photodissociation ?
- HCN/H¹³CN or as low as 30-45 (Daniel et al. 2013, Magalhaes et al to be submitted): R=55±10
- HCN/H¹³CN as high as 140 (Roueff et al. 2015): HCN/HC¹⁵N=222±40
- $\Rightarrow\,$ is this a fractionated reservoir ? or the bulk ?

Towards a direct determination in disks

$\rm CN/\rm C^{15}\rm N$ towards TW Hya

A protostellar analog: TW Hya

- close by: 59.5 \pm 1 pc (ESA/GAIA)
- strong CN(3-2) line
- face-on: hf structure is resolved
- + 8 Myr, \sim giant planet formation stage
- ALMA: the only facility to measure N-isotopic ratios in disks

CN and $\mathsf{C}^{15}\mathsf{N}$ towards TW Hya

- Ring: R = 42 AU, FWHM=54 AU ($d = 59.5 \pm 1.0$)
- Simple analysis in the direct plane: no sharp inner edge
- Radiative transfer modelling in the uv-plane is required
- Related to chemistry of CN in disks (Cazzoletti et al. 2017)

CN and $C^{15}N$ towards TW Hya

- high SNR of CN: optically thin hf lines
- three C¹⁵N hf lines: optically thin
- Direct determination of the column density ratio
- analysis in the *uv* plane: co-spatial distributions (Gaussian disks), single excitation temperature

$$CN/C^{15}N = 323 \pm 30$$

- Excitation: thermalized (2-1) and (3-2) transitions
- Equal excitation temperature for both isotopologues
- CN emission from the cold molecular layer (narrow lines)

Multiple isotopic reservoirs in PSN

- + HCN in MWC 480: $H^{13}CN/HC^{15}N$ $1.9{\pm}0.4{\times}70=132{\pm}24$
- HCN in 5-disks sample: $\langle \mathcal{R} \rangle {=} 111 {\pm} 19$
- CN in TW Hya: $CN/^{15}N=323\pm30$
- all located in the solar neighbourhood
- Solar neighbourhood: chemically homogeneous within ${\sim}1.5~{\rm kpc}$ (Sofia & Meyer 2001)
- $\Rightarrow\,$ All those disks carry the same elemental $\,^{14}\text{N}/^{15}\text{N}$

Results

- Two isotopic reservoirs of nitrogen at the PSN stage: elemental and fractionated
- Present in comet forming regions; comets retained only one reservoir

The present-day elemental $^{14}\mathrm{N}/^{15}\mathrm{N}$ ratio in the local ISM

Galactic chemical evolution models

- Stellar nucleosynthesis: ¹⁴N/¹⁵N decreases with time (Romano & Matteucci 2003; Romano et al. 2017)
- 441 is the elemental ratio 4.6 Gyr ago, where the PSN formed
- Where did the Sun formed ?

- \mathcal{R} =441: protosun, 4.6 Gyr ago, but where ?
- evidences from metallicty for a formation at smaller galactic radius (Nieva & Przybilla 2012; Minchev et al. 2013)
- pure dynamical evolution: inward migration (Martínez-Barbosa et al. 2015)

Hily-Blant et al. (2017b)

- $CN/C^{15}N$ ratio in TW Hya reflects the present-day ratio
- Consistent w/ direct dense and (S-P-corrected) diffuse measurements
- Consitent w/ outward migration from 5–6 kpc (Minchev et al. 2013)

Identify isotopic reservoirs in prestellar cores

The $^{14}N/^{15}N$ ratio in prestellar cores in the LISM

- Direct measurements: consistent with the two reservoirs seen in disks (Hily-Blant et al. 2013)
- N_2H^+ : a problem...

33

34 Observations of HC_3N and $HC_3^{15}N$ towards L1544

- L1544: prestellar core; signatures of collapse; before first Larson core
- Observations in the ASAI large program (Lefloch & Bachiller; Vastel subgroup leader)
- Motivation: direct measurement; HCN challenging because of hyperfine anomalies (Magalhaes talk)

HC_3N and $HC_3^{15}N$ spectra towards L1544

- exquisite sensitivity
- hf structure
- one position; multiple lines; no single excitation temperature

 HC_3N and $HC_3^{15}N$ spectra towards L1544

- exquisite sensitivity
- hf structure
- one position; multiple lines; no single excitation temperature

37

Two analysis: two results

Rotational analysis

Hyperfine analysis

 $\mathcal{R}{=}216{\pm}30$

 $\mathcal{R}{=}400{\pm}20$

Two analysis: two results

- hyperfine analysis: better overall agreement
- \mathcal{R} =400±20

Source	Species	R	Method [§]	Reference
TMC1(CP)	HC_3N	270 ± 57	Direct	(1-3)
	HC_3N	257 ± 54	Indirect	(1-2)
	HC_5N	323 ± 80	Direct	(1)
	HC_5N	344 ± 80	Indirect	(1)
L1527	HC_3N	338 ± 12	Indirect	(4)
L1544	HC ₃ N	400 ± 20	Direct	This work
	HCN	140 - 350	Indirect	(5)
	CN	500 ± 75	Indirect	(6)
TW Hya	CN	323 ± 30	Direct	

 $\$ Direct methods measure the $\rm X^{15}N/X^{14}N$ abundance ratio; indirect methods use double isotopic ratios.

References: (1) Taniguchi & Saito (2017) (2) Kaifu et al. (2004) (3) Takano et al. (1998) (4) Araki et al. (2016) (5) Hily-Blant et al. (2013a) (6) Hily-Blant et al. (2013b) • R=400±20

- Chemistry: which formation route dominates ?
- $C_2H_2 + CN \longrightarrow HC_3N + H$
- $HNC + C_2H \longrightarrow HC_3N + H$
- Recent work: source dependent (?)
- This work: marginally supports CN route;

Conclusions and perspectives

Conclusions

- \blacksquare Direct measurement of CN/C ^{15}N in TW Hya: 323 ± 30
- **2** HCN/HC¹⁵N in sample of disks: 111 ± 19
- **③** Direct evidence for multiple reservoirs in PSN analogs
- **5** CN not a photoproduct of HCN
- 6 CN traces the molecular layer
- \bigcirc Present-day elemental ¹⁴N/¹⁵N ratio in LISM: 323±30
- **③** Consistent with Galactic Chemical Evolution models

New scenario

- Two isotopic, interstellar, reservoirs of nitrogen: N (\approx 140) and N₂ (\approx 441) in parent molecular cloud
- Cometary measurements: atomic N reservoir
- N₂ was the dominant reservoir in the PSN
- N₂ too volatile: not trapped in cometary ices
- cometary NH₃ from hydrogenation of N
- Earth: mixture of the two reservoirs ?

Hily-Blant et al. (2013)

Observations

- Measure radial gradient of $^{14}\mathrm{N}/^{15}\mathrm{N}$ in disks
- Measure HCN/HC $^{15}\mathrm{N}$ in TW Hya for direct comparison to $\mathrm{CN/C^{15}N}$
- Measure $CN/C^{15}N$ in other disks (V4046Sgr)
- Measure directly $\rm HCN/\rm HC^{15}\rm N$ in cores

Theory and chemical modelling

- Chemical fractionation of nitrogen in prestellar cores (N_2H^+)
- Direct measurement of ${\rm HCN}/{\rm HC^{15}N}$ in disks
- Collision cross sections for isotopologues of ${\rm HC_3N}$

References

- Bockelée-Morvan, D., Calmonte, U., Charnley, S., et al. 2015, Space Sci Rev, 197, 47
- Cazzoletti, P., van Dishoeck, E. F., Visser, R., Facchini, S., & Bruderer, S. 2017, ArXiv e-prints
- Daniel, F., Gérin, M., Roueff, E., et al. 2013, A&A, 560, A3
- Friesen, R. K., Francesco, J. D., Bourke, T. L., et al. 2014, The Astrophysical Journal, 797, 27
- Glück, C. B., Stutzki, J., Röllig, M., Chambers, E., & Risacher, C. 2016, to appear in A&A
- Guzmán, V. V., Öberg, K. I., Huang, J., Loomis, R., & Qi, C. 2017, ApJ, 836, 30
- Guzmán, V. V., Öberg, K. I., Loomis, R., & Qi, C. 2015, ApJ, 814, 53
- Heays, A. N., Visser, R., Gredel, R., et al. 2014, A&A, 562, A61
- Hily-Blant, P., Bonal, L., Faure, A., & Quirico, E. 2013, Icarus, 223, 582
- Hily-Blant, P., Faure, A., Vastel, C., et al. 2017a, A&A
- Hily-Blant, P., Magalhaes, V., Kastner, J., et al. 2017b, A&A, 603, L6
- Lucas, R. & Liszt, H. 1998, A&A, 337, 246
- Martínez-Barbosa, C. A., Brown, A. G. A., & Portegies Zwart, S. 2015, MNRAS, 446, 823
- Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G., & Burnett, D. S. 2011, Science, 332, 1533
- Minchev, I., Chiappini, C., & Martig, M. 2013, A&A, 558, A9
- Nieva, M.-F. & Przybilla, N. 2012, A&A, 539, A143
- Romano, D. & Matteucci, F. 2003, MNRAS, 342, 185
- Romano, D., Matteucci, F., Zhang, Z.-Y., Papadopoulos, P. P., & Ivison, R. J. 2017, MNRAS, 470, 401
- Roueff, E., Loison, J. C., & Hickson, K. M. 2015, A&A, 576, A99
- Sofia, U. J. & Meyer, D. M. 2001, ApJL, 554, L221
- van Dishoeck, E. F., Bergin, E. A., Lis, D. C., & Lunine, J. I. 2014, Protostars & Planets VI, 835
- Walmsley, C. M., Flower, D. R., & Pineau des Forêts, G. 2004, A&A, 418, 1035