The nitrogen isotopic composition of embedded protostars – and first results on ¹⁴NH₃/¹⁵NH₃ in comet 67P

Susanne F. Wampfler

Center for Space and Habitability (CSH)

University of Bern

Jes Jørgensen, Hannah Calcutt, Audrey Coutens, and the PILS Team Martin Bizzarro, Elishevah van Kooten, Jon Ramsey Kathrin Altwegg, Martin Rubin, and the ROSINA Team

Outline

- Embedded protostars:
 - Single-dish measurements
 - Spatially resolved measurement of NGC 1333 IRAS 2A with IRAM Plateau de Bure
 - First results from the ALMA-PILS survey
- First in situ measurement of the ¹⁴N/¹⁵N ratio in a comet:
 - Preliminary results on the ¹⁴NH₃/¹⁵NH₃ ratio in comet 67P/Churyumov–Gerasimenko from Rosetta-ROSINA

The nitrogen isotopic composition of embedded protostars

Key questions

- What **mechanism** is responsible for the observed isotopic variations?
- Do the ¹⁵N-enrichments observed in prestellar cores survive into the protostellar phases? How does the ¹⁴N/¹⁵N ratio evolve during the star formation process? Inheritance vs. reprocessing?
- What are the fractionation routes? What are the carriers of the ¹⁵N-signature? How are they incorporated into the solids?

How we measure ¹⁴N/¹⁵N ratios

Singly substituted molecules (CN, N₂H⁺, NH₃)

Caveat: main isotopologue usually optically thick \rightarrow need to determine optical depth

 Doubly (or multiply) substituted molecules (H¹³C¹⁵N, ¹⁵NND⁺)

Caveat: usually very weak lines

 Double isotope methods (HCN, HNC)
 Caveat: relies on another isotopic ratio, e.g. ¹²C/¹³C

Pilot study for protostars

- APEX 12m telescope
- Small sample of 4 protostars: 3 Class 0, 1 Class I
- HCN and HNC isotopologues (H¹³CN, HC¹⁵N, HN¹³C, H¹⁵NC)

$$\frac{{}^{14}N}{{}^{15}N} = \frac{H^{13}CN}{HC^{15}N} \cdot \frac{{}^{12}C}{{}^{13}C}$$

Check the optical depth

• Hyperfine structure fit: $au \sim 0.3$ optically thin

Radiative transfer modeling

Results from embedded protostars

- ¹⁵N-enrichments in HCN in 2/3 sources compared to solar
- Values comparable to comets and meteorites for IRAS 16293
- Nondetection for the Class I protostar

Wampfler et al. 2014

Fractionation mechanisms

Chemical fractionation:

e.g. Terzieva & Herbst 2000 Rodgers & Charnley 2008 Wirström et al. 2012 Hily-Blant et al. 2013 Roueff et al. 2015

 Isotopically selective photochemistry (self-shielding of N₂)

e.g. Croteau et al. 2011, Lyons et al. 2009, Heays et al. 2014, Visser et al. in prep.

 Combination of both? Ad-/desorption effects? $^{15}N + ^{14}N_2H^+ \rightleftharpoons ^{14}N + ^{15}N^{14}NH^+ + \Delta E$

Chemical fractionation or photochemistry?

Trend of increasing ¹⁵N-enrichment with decreasing outer envelope temperature would be in favour of lowtemperature chemistry, but statistics insufficient

Small survey in NGC 1333

Walsh et al. 2007, ApJ 655, 958 with data from Sandell & Knee 2001, ApJ 546, L49

6 protostars in the same molecular cloud to avoid background variations, with different temperatures

Chemical fractionation or photochemistry?

Preliminary!

Source sample in NGC 1333, Onsala 20m data. Trend not confirmed.

¹⁴N/¹⁵N ratios in prestellar cores & protostars

	HCN	HNC	CN	NH ₃	NH ₂ D	N ₂ H+	
L1544	140-360	>27	510±70		>700	1000±200	solar
L1498	167	>90	476±70	619±100			(441±6)
L183	140-250		530 ⁺⁵⁷⁰ / ₋₁₈₀				enriched
L1521E	151±16						depleted
L1521F	>51	24-31 (?)	539±118				aopietea
Barnard 1b	330 +60/ ₋₅₀	225 ⁺⁷⁵ / ₋₄₅	290 ⁺¹⁶⁰ / ₋₈₀	300 +55/ ₋₄₀	230 ⁺¹⁰⁵ / ₋₅₅	400 ⁺¹⁰⁰ / ₋₆₅ >600	
N1333 IRAS 4					>270		
N1333 DCO+					360 ⁺²⁶⁰ / ₋₁₁₀		
N1333				344±173			
L134N(S)					530 ⁺⁵⁷⁰ / ₋₁₈₀		
L1689N					810 ⁺⁶⁰⁰ / ₋₂₅₀	330 ⁺¹⁷⁰ / ₋₁₀₀	
Cha-MMS1		135					
L1262 core				356±107			
L1262 YSO				453±247			
IRAS 03282					250±40		
IRAS 16293A	177±20	242±32				observed	
R CrA IRS7B	287±36	259±34	229±50			observed	
OMC-3 MMS6	366±86	460±65				observed	

Different tracers make comparison challenging!

What we learned from single-dish data

 ¹⁵N-enrichments in HCN similar to prestellar cores observed in (some) Class 0 protostars

• Relative fractionation among tracers

 Some indications for spatial variations (e.g. Hily-Blant et al. 2013, Icarus 223, 582)

... and what we did not learn

 Single-dish ¹⁴N/¹⁵N ratios only provide spatially averaged measurement

 \rightarrow so far inconclusive on fractionation mechanism

 Different radial signatures expected for chemical fractionation and isotope selective photochemistry

 \rightarrow spatially resolved observations

Spatially resolved observations NGC 1333 IRAS 2A (Class 0 protostar) with IRAM PdBI

1 track each in C and D configuration

Short spacings from the 30m

Preliminary results ¹⁴N/¹⁵N (using ¹²C/¹³C = 69)

Wampfler et al. in prep. ¹⁴N/¹⁵N ratio varies by factor ~2 along outflow axes. Caused by irradiation/photochemistry?

The role of the ¹²C/¹³C ratio

Do $H^{13}CN/HC^{15}N$, $HN^{13}C/H^{15}NC$, ${}^{13}CN/C^{15}N$ etc. mainly reflect ${}^{12}C/{}^{13}C$ variations, not ${}^{14}N/{}^{15}N$?

Roueff et al. 2015

 \rightarrow Observations for ¹²C/¹³C measurement with NOEMA & 30m just completed

Constraints from single-dish data

 ¹⁴N/¹⁵N (and ¹²C/¹³C) ratios from common tracers (HCN,HNC, NH₂D, CN, N₂H⁺) using OSO 20m
 Analysis in progress → indications for ¹²C/¹³C < 70

Protostellar Interferometric Line Survey (PILS)

IRAS 16293-2422 - ALMA band 7

First results on ¹⁵N from the PILS survey

- ¹⁵NH₂CHO:
 blending, close to noise level
 ¹⁴N/¹⁵N > 100 (Coutens et al. 2016)
- H¹⁵NCO: line frequencies too uncertain for clear line assignment ¹⁴N/¹⁵N > 138 (Coutens et al. 2016)

(for offset position around source B, based on standard ¹²C/¹³C)

What about simple species?

• CN: absorption

- Detections of HC¹⁵N, H¹⁵NC (only 1 line each, absorption!)
- H¹³C¹⁵N, H¹⁵N¹³C tentative (only 1 line)

¹⁵N follow-up for PILS

• ALMA cycle 5 project in band 6

¹⁴NH₃/¹⁵NH₃ in comet 67P/Churyumov– Gerasimenko

¹⁴N/¹⁵N in comets (ground-based data)

 Ground-based observations of comets indicate a very homogeneous nitrogen isotopic composition

Comets visited by spacecraft

81P/Wild 2 $5.5 \times 4.0 \times 3.3$ km Stardust, 2004

67P/Churyumov-Gerasimenko 5×3 km Rosetta, 2014

103P/Hartley 2 2.2×0.5 km Deep Impact/EPOXI, 2010

1P/Halley $16 \times 8 \times 8$ km Vega 2, 1986

19P/Borrelly $8 \times 4 \text{ km}$ Deep Space 1, 2001

9P/Tempel 1 $7.6 \times 4.9 \text{ km}$ Deep Impact, 2005

Modified 2014-08-04. For the latest version of this image, visit planetary.org/cometscale Image credits: Halley: Russian Academy of Sciences / Ted Stryk. Borrelly: NASA / JPL / Ted Stryk. Emily Lakdawalla. Wild 2: NASA / JPL. Montage by Emily Lakdawalla.

Comets visited by spacecraft

81P/Wild 2 5.5 × 4.0 × 3.3 km Stardust, 2004

67P/Churyumov-Gerasimenko 5 × 3 km _{Rosetta}, 2014

103P/Hartley 2 2.2 × 0.5 km Deep Impact/EPOXI, 2010

1P/Halley 16 × 8 × 8 km Vega 2, 1986

19P/Borrelly 8 × 4 km Deep Space 1, 2001 9P/Tempel 1 7.6 × 4.9 km Deep Impact, 2005

Modified 2014-08-04. For the latest version of this image, visit planetary.org/cometscale Image credits: Halley: Russian Academy of Sciences / Ted Stryk. Borrelly: NASA / JPL / Ted Stryk. Tempel 1 and Hartley 2: NASA / JPL / UMD. Churyumov-Gerasimenko: ESA / Rosetta / NavCam / Emily Lakdawalla. Wild 2: NASA / JPL. Montage by Emily Lakdawalla.

The Rosetta mission

→ ROSETTA: LIVING WITH A COMET

March-July 2015 Increasing comet activity

Images: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; ESA/Rosetta/Philae/LUA; ESA/Rosetta/NavCam – IC BY-SA IGO 3.0; spacecraft: ESA/ATG medialab

European Space Agency

Cesa

Rosetta-ROSINA

Rosina instrument suite

COPS – Cometary Pressure Sensor

- measures total neutral particle density and velocity
- measures total neutral gas density (10⁵ to 10¹¹ cm⁻³)
- serves as safety instrument for Rosetta

DFMS – Double Focussing Mass Spectrometer

- mass range: 12 to 150 u/e
- mass resolution: m/Δm ≈ 3'000 (at 1% peak height) (@ mass 28) m/Δm ≈ 9'000 (at 50% peak height)
- high dynamic range (10⁸)

RTOF – Reflectron-type Time Of Flight Mass Spectrometer

- mass range: 1 to 1'100 u/e
- mass resolution: $m/\Delta m \approx 450$ (at 50% peak height)
- high dynamic range

Portrait of 67P

- Longest dimension:
- Rotation period:
- Orbital period:
- Perihelion distance:
- Rotation axis tilt:
- Density:
- Porosity:
- Low reflectance:
- Dust-to-gas ratio:

4.1 km 12.4 (12.0) h 6.5 yrs 1.25 AU 68° 0.5 g cm⁻³ 75% 5% ~4:1 by mass (highly debated!)

Molecular inventory of 67P

esa

→ THE COMETARY ZOO: GASES DETECTED BY ROSETTA

Minor species following H_2O vs. CO_2

Gasc et al. 2017

D/H in water

Altwegg et al. 2015, Science 347

¹²C/¹³C in 67P

- ¹²C/¹³C in CO₂:
- ¹²C/¹³C in CO:
- ${}^{12}C/{}^{13}C$ in C_2H_4 :
- ${}^{12}C/{}^{13}C$ in C_2H_5 :
- Earth:
- Solar wind

84 ± 4 86.0 ± 8.5 83.6 ± 11.8 85.5 ± 9.0 89 98 ± 2 (Hässig et al., 2017)
(Rubin et al., 2017)
(Rubin et al., 2017)
(Rubin et al., 2017)
(Meija et al., 2016)
(Hashizume et al., 2004)

Summary

- ¹⁴N/¹⁵N around IRAS 2A varies by factor ~2
- First results from PILS:
 - NH₂CHO: ¹⁴N/¹⁵N > 100
 - HNCO: ¹⁴N/¹⁵N > 138
 - CH₃CN:

(Coutens et al. 2016)(Coutens et al. 2016)(Calcutt et al. in prep.)

 Comprehensive sets of ¹⁴N/¹⁵N and ¹²C/¹³C ratios needed for more protostars

Open questions

• What **mechanism** is responsible for the observed isotopic variations?

- Why are there such large variations of the ¹⁴N/¹⁵N ratio among the solar system bodies, but the nitrogen isotopic composition of comets is quite homogeneous (unlike their D/H)?
- Why is the NH₃ of comets enriched in ¹⁵N, but no ¹⁵Nenrichments are observed in the ISM/around protostars?