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Outline

* Embedded protostars:

 Single-dish measurements

* Spatially resolved measurement of NGC 1333 IRAS 2A
with IRAM Plateau de Bure

* First results from the ALMA-PILS survey

* First in situ measurement of the *N/*>N ratio in a
comet:

* Preliminary results on the *NH,/°NH; ratio in comet
67P/Churyumov—Gerasimenko from Rosetta-ROSINA



The nitrogen isotopic
composition of
embedded protostars



Key questions

* What mechanism is responsible for the observed
isotopic variations?

* Do the °N-enrichments observed in prestellar cores
survive into the protostellar phases?
How does the *N/*>N ratio evolve during the star
formation process? Inheritance vs. reprocessing?

* What are the fractionation routes?
What are the carriers of the °N-signature?
How are they incorporated into the solids?



How we measure *N/1°N ratios

* Singly substituted molecules (CN, N,H*, NH,)

Caveat: main isotopologue usually optically thick
— need to determine optical depth

* Doubly (or multiply) substituted molecules
(H13C15N, 15NND+)

Caveat: usually very weak lines

* Double isotope methods (HCN, HNC)

Caveat: relies on another isotopic ratio,
e.g. 12C/13C




Pilot study for protostars

* APEX 12m telescope

* Small sample of 4 protostars: 3 Class 0, 1 Class |
« HCN and HNC isotopologues (H3CN, HC*>N, HN*3C, H°NC)

14N HlSCN 12C

15N — HCIN 13C




Check the optical depth

* Hyperfine structure fit: 7 ~ 0.3 optically thin

e Radiative transfer modeling



Results from embedded protostars

e LbN-enrichments in HCN in 2/3 sources compared to solar

* VValues comparable to comets and meteorites for IRAS
16293

* Nondetection for the Class | protostar

Wampfler et al. 2014
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Fractionation mechanisms

* Chemical fractionation:

e.g. Terzieva & Herbst 2000
Rodgers & Charnley 2008
Wirstrom et al. 2012
Hily-Blant et al. 2013
Roueff et al. 2015

* |sotopically selective
photochemistry
(self-shielding of N,)

e.g. Croteau et al. 2011, Lyons et al. 2009,

Heays et al. 2014, Visser et al. in prep.

e Combination of both?
Ad-/desorption effects?

15N + 14N2H+ = 14N + 15N14NH++ AE




Chemical fractionation or photochemistry?

Wampfler et al.,
2014, A&A 572, A24

Trend of increasing °N-enrichment with decreasing
outer envelope temperature would be in favour of low-
temperature chemistry, but statistics insufficient



Small survey in NGC 1333

SCUBA 850um map of NGC1333 (SK01)

Walsh et al. 2007,
ApJ 655, 958

with data from
Sandell & Knee 2001,
AplJ 546, L49
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6 protostars in the same molecular cloud to avoid
background variations, with different temperatures



Chemical fractionation or photochemistry?

Preliminary!

Source sample in NGC 1333, Onsala 20m data.
Trend not confirmed.



14N/1°N ratios in prestellar cores & protostars
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What we learned from single-dish data

* LN-enrichments in HCN similar to prestellar cores
observed in (some) Class O protostars

 Relative fractionation among tracers

* Some indications for spatial variations
(e.g. Hily-Blant et al. 2013, Icarus 223, 582)



... and what we did not learn

* Single-dish *N/*>N ratios only provide spatially
averaged measurement

— so far inconclusive on fractionation mechanism
e Different radial signatures expected for chemical
fractionation and isotope selective photochemistry

— spatially resolved observations



Spatially resolved observations
NGC 1333 IRAS 2A (Class 0 protostar) with IRAM PdBI

1 track eachin Cand D Short spacings
configuration from the 30m




Preliminary results
14N /15N (using 12C/13C = 69)

JTdv [Kkm/s]

Wampfler et al. in prep.
4N />N ratio varies by factor ~2

along outflow axes. Caused by
irradiation/photochemistry?

JTdv [Kkm/s]



The role of the 12C/13C ratio

Do HI3CN/HC™N, HN13C/H1°NC, 13CN/C!>N etc.
mainly reflect 12C/13C variations, not **N/>N?

Roueff et al. 2015

—> Observations for 12C/13C measurement with NOEMA &
30m just completed



Constraints from single-dish data

10 10
Wampfler et al. in prep. Velocity (km -1)

14N/N (and 2C/13C) ratios from common tracers
(HCN,HNC, NH,D, CN, N,H*) using OSO 20m
Analysis in progress = indications for *C/*3C < 70



Protostellar Interferometric Line Survey (PILS)
IRAS 16293-2422 - ALMA band 7
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First results on °N from the PILS survey

15NH,CHO:
blending, close to noise level
14N/>N > 100 (Coutens et al. 2016)

H>NCO:
line frequencies too uncertain for clear line

assignment
14N/>N > 138 (Coutens et al. 2016)

~ (for offset position around source B,

12C/




What about simple species?
e CN: absorption

e Detections of HCT°N, HI°NC
(only 1 line each, absorption!)

e HI3CPN, HPNI3C tentative (only 1 line)




>N follow-up for PILS

 ALMA cycle 5 project in band 6




“*“NH,/*>NH, in comet
67P/Churyumov—
Gerasimenko
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Hily-Blant et al. 2017

based observations of comets indicate a very

 Ground

homogeneous nitrogen isotopic composition




Comets visited by spacecraft

81P/Wild 2 67P/Churyumov- 103P/Hartley 2
5.5%4.0x 3.3 km Gerasimenko 2.2x0.5km
Stardust, 2004 5% 3km Deep Impact/EPOXI, 2010

Rosetta, 2014

1P/Halley 19P/Borrelly 9P/Tempel 1
16 X 8 x 8 km 8 X 4km 7.6 X 4.9 km
Vega 2, 1986 Deep Space 1, 2001 Deep Impact, 2005
THE\ Modified 2014-08-04. For the latest version of this image, visit planetary.org/cometscale

LANEMRY ®©@ Image credits: Halley: Russian Academy of Sciences / Ted Stryk. Borrelly: NASA / JPL / Ted Stryk.
Tempel 1 and Hartley 2: NASA / JPL / UMD. Churyumov-Gerasimenko: ESA / Rosetta / NavCam /

Soacieny Emily Lakdawalla. Wild 2: NASA / JPL. Montage by Emily Lakdawalla.
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The Rosetta mission

2 ROSETTA: LIVING WITH A COMET _

Increasing comet activity

L T
13 August 2015 &
Perihelion ; ) 14 February 2015
A . NTE Close encounter

12 November 2015
% One year since comet landing

September 2016 izt
End of mission 4
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12 November 2014

Orbit of Comet 2
67P/Churyumov—Gerasimenko :
Comet |anding
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21 March 2014 28 June 2014 14 July 2014 6 August 2014 October 2014
First resolved image Comet shape revealed Arrival at the comet Orbiting close to the comet

First view of the comet after wake-up

- [C BY-SA TGO 3.0; spacecraft: ESATATG medialab European Space Agency

Images: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAMY:

www.esa.int



Rosetta-ROSINA
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Rosina instrument suite

COPS — Cometary Pressure Sensor

* measures total neutral particle density and velocity
* measures total neutral gas density (10° to 10! cm™3)
e serves as safety instrument for Rosetta

DFMS — Double Focussing Mass Spectrometer
* massrange: 12 to 150 u/e
* mass resolution:
m/Am = 3’000 (at 1% peak height) (@ mass 28)
m/Am = 9’000 (at 50% peak height)
* high dynamic range (108)

RTOF — Reflectron-type Time Of Flight Mass Spectrometer

* massrange: 1to 1’100 u/e
* mass resolution: m/Am = 450 (at 50% peak height)

* high dynamic range




Portrait of 67P

* Longest dimension: 4.1 km

* Rotation period: 12.4 (12.0) h
* Orbital period: 6.5 yrs

* Perihelion distance: 1.25 AU

* Rotation axis tilt: 68°

* Density: 0.5gcm?3

* Porosity: 75%

* Low reflectance: 5%

* Dust-to-gas ratio: ~4:1 by mass (highly debated!)




Molecular inventory of 67P
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2 THE COMETARY Z00: GASES DETECTED BY ROSETTA

THE LONG CARBON THE AROMATIC RING THE KING OF THE Z00

Glycine (amino acid)

THE "MANURE SMELL"
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THE “POISONOUS"

MOLECULES
Acetylene
Hydrogen cyanide
Acetonitrile
Formaldehyde

THE "SMELLY
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THE MOLECULE
IN DISGUISE

European Space Agency






DD/d.9 @~

Z As|uieH d/g0t
dIAH dSt >

A3)jeH _H K

eineAH zd 966T/D
ppe.ses 1d/600T

Jupiter family
Altwegg et al. 2015, Science 347

9[AnL 48
Jeaurn £1 z00z/2
1eaN D 1002

Sueyz eAd| d/EST [
ddog a|eH S66T/2

Protosolar nebula

©
e
i)
Q
-
=
O
@)

& aunydapn

\

() snueun
snpejasuj & uInes

soudnr @

(-
Q
4
(q0)
=
=
.
.
O

OO0
sa)4puoy) 000%




12C/13Cin 67P

Hassig et al.
2017
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12C/13Cin CO,: 84 t 4 (Hassig et al., 2017)
12C/13C in CO: 86.0 + 8.5 (Rubin et al., 2017)
12C/13Cin C,Hy,: 83.6+£11.8 (Rubinetal., 2017)
12C/13Cin C,H.: 85.5+9.0 (Rubin et al., 2017)
Earth: 89 (Meija et al., 2016)
Solar wind 98 +2 (Hashizume et al., 2004)



Summary

14N/>N around IRAS 2A varies by factor ~2

First results from PILS:

* NH,CHO:  *N/®N > 100 (Coutens et al. 2016)
 HNCO: AN/N > 138 (Coutens et al. 2016)
* CH,CN: (Calcutt et al. in prep.)

Comprehensive sets of **N/*>N and 12C/*3C ratios
needed for more protostars



Open questions

* What mechanism is responsible for the observed
isotopic variations?

* Why are there such large variations of the *N/*°N ratio
among the solar system bodies, but the nitrogen isotopic
composition of comets is quite homogeneous (unlike
their D/H)?

* Why is the NH; of comets enriched in *°N, but no >N-
enrichments are observed in the ISM/around
protostars?



