Models of Nitrogen Fractionation in Depletion Cores

Eva Wirström Department of Space, Earth and Environmental Sciences Chalmers University of Technology, Sweden

Collaborators: S. Charnley – NASA Goddard SFC L. Bizzocchi – MPE, Garching L. Dore – Università di Bologna

> Funding by Swedish National Space Board and NASA's Origins of Solar Systems Program

Eva Wirström Fractionation in Depletion Cores

Why dark pre-stellar cores?

Example: Barnard 68 FORS Team, 8.2m VLT Antu, ESO

Cold: T \approx 5 - 15 K Dense: n(H₂) ~ 1e5-7 cm⁻³ Dark: A_v > 10 mag

Eva Wirström Fractionation in Depletion Cores

Why dark pre-stellar cores?

Example: Barnard 68 FORS Team, 8.2m VLT Antu, ESO

Cold: T \approx 5 - 15 K Dense: n(H₂) ~ 1e5-7 cm⁻³ Dark: A_v > 10 mag

Eva Wirström Fractionation in Depletion Cores

Why dark pre-stellar cores?

Example: Barnard 68 FORS Team, 8.2m VLT Antu, ESO Cold: T \approx 5 - 15 K Dense: n(H₂) ~ 1e5-7 cm⁻³ Dark: A_v > 10 mag > CO etc. frozen on dust > N₂ (N₂H⁺) still in gas > High atomic D/H

B68, Bergin et al (2002)

Eva Wirström Fractionation in Depletion Cores

Why dark pre-stellar cores?

Example: Barnard 68 FORS Team, 8.2m VLT Antu, ESO

Cold: $T \approx 5 - 15 \text{ K}$ Dense: $n(H_2) \sim 1e5-7 \text{ cm}^{-3}$ Dark: $A_v > 10 \text{ mag}$ > CO etc. frozen on dust > $N_2 (N_2H^+)$ still in gas > High atomic D/H

Disequilibrium chemistry Gas-grain interaction

Potential for most extreme ¹⁵N (and D) enhancements (and depletions)

Isotope fractionation processes

Eva Wirström Fractionation in Depletion Cores

photodissociation H₂: Watson (1973)

N₂: Heavs et al. (2014)

Isotope fractionation processes

Nitrogen fractionation models

Reaction	f(B,m) (10 K)	$\frac{\Delta E_0}{k}$ (K)	<u>К</u> (10 К)
$N^{15}N + HN_2^+ \rightleftharpoons N_2 + H^{15}NN^+$	0.494	10.7	1.44
$N^{15}N + HN_2^+ \rightleftharpoons N_2 + HN^{15}N^+$	0.499	2.25	0.63
$^{15}N^+ + N_2 \rightleftharpoons N^+ + N^{15}N$	1.959	28.3	33.2
$^{15}N^+ + NO \rightleftharpoons N^+ + {}^{15}NO$	0.979	24.3	11.1
$^{15}N + CNC^{+} \rightleftharpoons N + C^{15}NC^{+}$	0.938	36.4	35.7
$^{15}N + HN_2^+ \rightleftharpoons N + H^{15}NN^+$	0.968	36.1	35.8
$^{15}N + HN_2^+ \rightleftharpoons N + HN^{15}N^+$	0.977	27.7	15.6
$^{15}N + HCNH^{+} \Rightarrow N + HC^{15}NH^{+}$	0.968	35.9	35.1

Terzieva & Herbst (2000)

Fractionation effect too minor to be detectable

Nitrogen fractionation models – depletion

Rodgers & Charnley (2008a,b)

cores

- ➢ High density (1e6 cm⁻³), CO depletion, and low temperature (10 K)
 ¹⁴N/¹⁵N ≥ 50
- Main ¹⁵N pool: initially molecular (and atomic?)

Nitrogen fractionation models – depletion

Rodgers & Charnley (2008a,b)

cores

- ➢ High density (1e6 cm⁻³), CO depletion, and low temperature (10 K)
 ¹⁴N/¹⁵N ≥ 50
- Main ¹⁵N pool: initially molecular (and atomic?)
- Separate ¹⁵N routes for Nitriles and Amines
- → different fract. timescales

Nitrogen fractionation models – depletion

Wirström et al. (2012)

 $N^+ + 0-H_2 \longrightarrow NH^+ + H$

cores

- Effective at low T, but rate overestimated (T dep.) (Le Bourlot, 1991; Dislaire et al., 2012)
 - → low o-H₂ suppress ¹⁵N fractionation in NH₃
 - No effect on nitriles
 - More pronounced difference btw Nitriles and Amines

(also Hily-Blant et al., 2013)

N fractionation in depletion cores (before 2015)

THE ASTROPHYSICAL JOURNAL LETTERS, 757:L11 (5pp), 2012 September 20

Figure 2. Left panel: time evolution of the nitrogen chemistry in dense cores, compared to CO and o-H2. Crucial times for the ¹⁵N fractionation in nitrogen hydrides

COST Nitrogen Fractionation WS, Copenhagen, November 2017

WIRSTRÖM ET AL.

N fractionation in depletion cores (before 2015)

THE ASTROPHYSICAL JOURNAL LETTERS, 757:L11 (5pp), 2012 September 20

Figure 2. Left panel: time evolution of the nitrogen chemistry in dense cores, compared to CO and o-H2. Crucial times for the ¹⁵N fractionation in nitrogen hydrides

Typical core lifetimes (e.g. Crapsi et al 2005)

COST Nitrogen Fractionation WS, Copenhagen, November 2017

WIRSTRÖM ET AL.

N fractionation in depletion cores (before 2015) – including D fractionation into H_2D^+

Nitriles:

- Highest ¹⁵N enrichments
- D enrichment

Amines:

- ¹⁵N and D enrichment, or...

- Very D enriched and ¹⁵N depleted,

Busemann et al (2006)

Wirström et al. (2012)

Interstellar nitrogen fractionation – models

Roueff et al. (2015)

- Updated reaction rates based on ZPE's & barrier evaluation
 - significant barriers in reactions suppress ¹⁵N fractionation from atomic ¹⁵N
 - → ¹⁵N⁺ is more efficiently circulated back into N¹⁵N
 - Demonstrates coupling btw N, C, and H fractionation

Loison talk

INIVERSITY OF TECHNOLOGY

Eva Wirström Fractionation in Depletion Cores

Wirström & Charnley'17 model – Timescales

Eva Wirström Fractionation in Depletion Cores

Wirström & Charnley'17 model – Nitriles

Eva Wirström Fractionation in Depletion Cores

Wirström & Charnley'17 model – Amines

Wirström & Charnley'17 model – atomic N reservoir?

Eva Wirström Fractionation in Depletion Cores

He⁺

C¹⁴NC

C¹⁴N

 $C^{15}N$

HC¹⁵N

HC¹⁵NH⁺

H¹⁵NC

14NH₃

HCO

 H_3O^+

C¹⁵NC⁺

¹⁴N¹⁵NH⁺

 $^{14}N^{15}N$

 He^+

CO, e

 $^{14}N_{2}$

 \mathbf{N}^+

0-H2

3H₂, e⁻

¹⁵NH⁺

¹⁵NH₃

 $^{14}N_{2}H^{+}$

 H_3^+

Wirström & Charnley'17 model – atomic ¹⁵N?

E.g. suggested for PSN by Hily-Blant et al (2017)

Eva Wirström Fractionation in Depletion Cores

Wirström & Charnley'17 model – ¹⁵N & D in functional groups of ices

The N_2H^+ problem **Observations** dark cores 1400 protostars high-mass SF cores high-mass protostellar objects 1200 ultracompact HII regions ¹⁴N₃H⁺ / ¹⁵N¹⁴NH⁺ 10005 N¹⁵NH⁺/¹⁵NNH⁺ >1 800 600 Protosolar 400 Earth 200

Bizzocchi L, et al. (2013). Daniel et al. (2013). Cordiner et al. in prep. Massive SF sources: Fontani et al. (2015).

Models

- Wirström et al (2012): ¹⁴N/¹⁵N in N₂H⁺=100-300, N¹⁵NH⁺/ ¹⁵NNH⁺>1
- Roueff et al (2015): Both N₂H^{+ 14}N/¹⁵N ratios ~ elemental

The N_2H^+ problem – Temp effect in HMSF?

The N_2H^+ problem – possible ${}^{15}N_2$ fractionation

- Wirström'12 model, including direct fractionation to doubly exchanged N₂ species
- Optimistic reaction rates estimated from ΔZPE's

The N_2H^+ problem – possible ${}^{15}N_2$ fractionation

Summary and outstanding issues

Disequilibrium ion-molecule chemistry under cold, dense cloud conditions, including full H_2 OPR treatment and freeze-out, predicts:

- Suppressed HCN and HNC fractionation, only CN may carry ¹⁵N enhancements – Barriers of relevant isotopic exchange reactions need to be re-evaluated for range of interaction geometries?
- High ¹⁴N/¹⁵N ratios in amines, but ices still D enhanced in rough agreement with non-correlations btw hotspots in primitive materials
- An increased atomic fraction of ¹⁵N produce nitriles with lower and N₂H⁺ with higher ¹⁴N/¹⁵N ratios, ie closer to what is observed in ISM – How relevant?
 In addition:
- All current models fail to reproduce low observed ¹⁵N in N₂H⁺ in dark clouds and high ¹⁵NH₃ in comets – Need to be addressed
- Alternative fractionation bimolecular reactions? Neutral processes?
- Spectroscopy available for doubly ¹⁵N substituted N₂H⁺ Can observations provide further constraints?