The Goddard Center for Astrobiology http://astrobiology.gsfc.nasa.gov

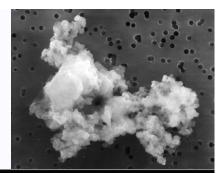
...Understanding how life emerges from cosmic and planetary precursors

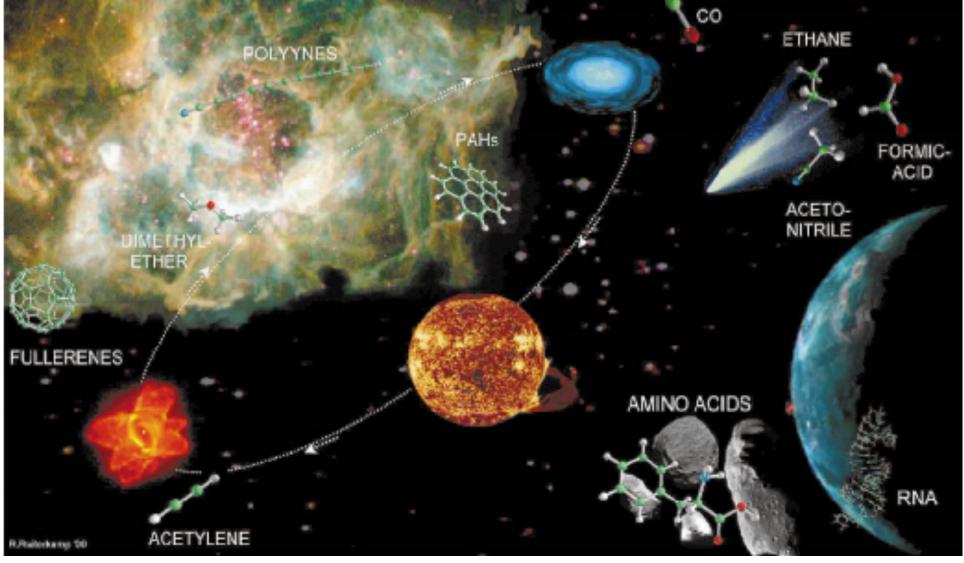
Nitrogen Fractionation and Formation of the Solar System

Steven Charnley NASA Goddard Space Flight Center

Nitrogen Fractionation in Space Niels Bohr Institute/ Danish Natural History Museum November 8 2017

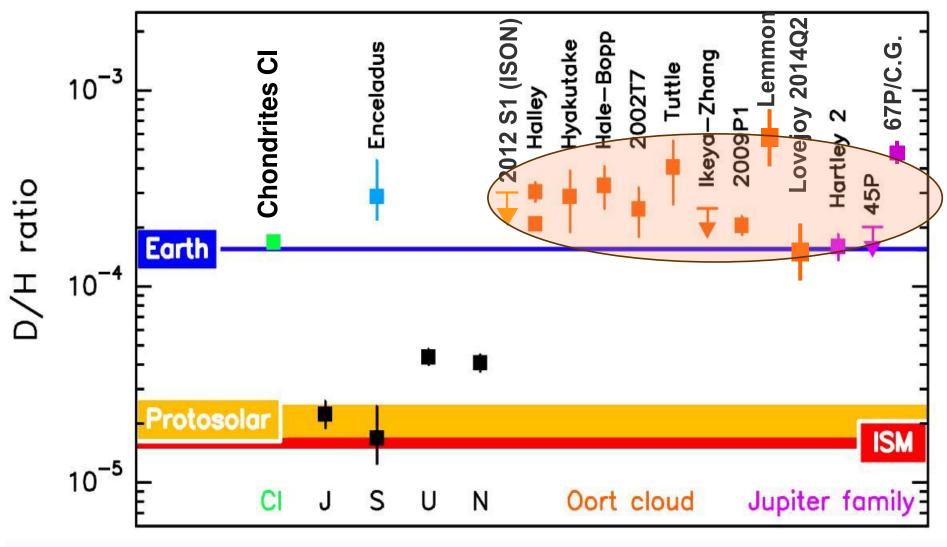
ACKNOWLEDGEMENTS

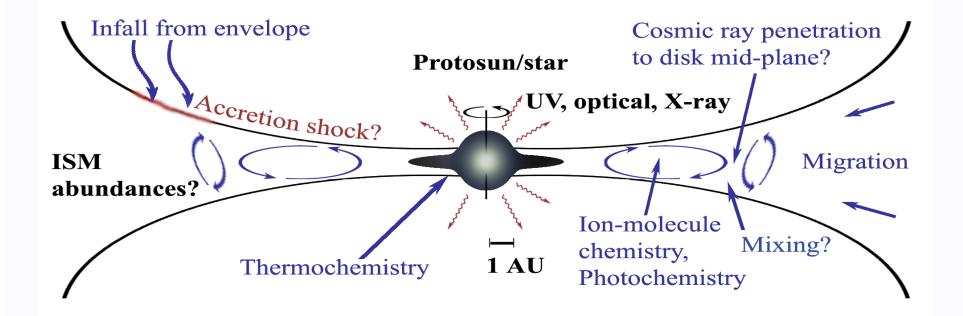

Eva Wirstroem, Gilles Adande, Stefanie Milam


OVERVIEW

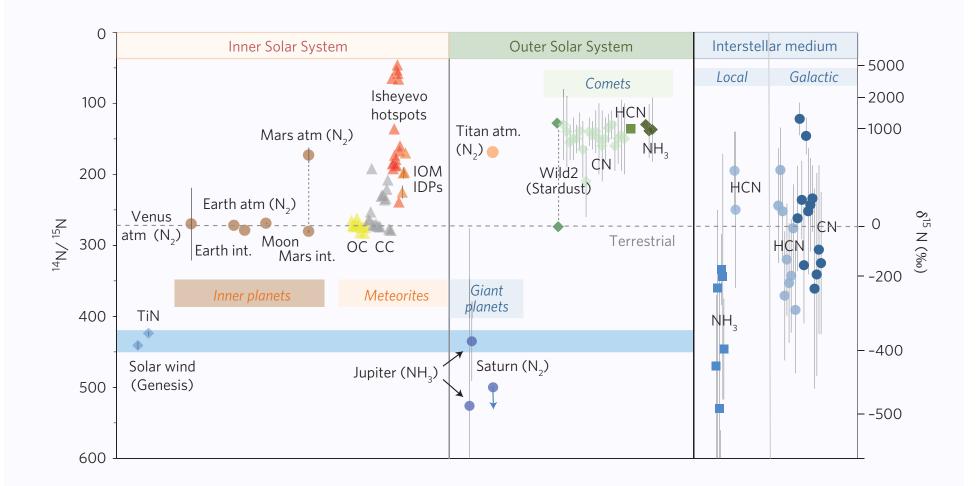
- ¹⁴N/¹⁵N ratios and Solar System
- Comets & meteorites: evidence for an ISM link?
- Interstellar ¹⁵N fractionation: models and observations
- Summary and current issues

ISM-Solar System Isotopic Connection?

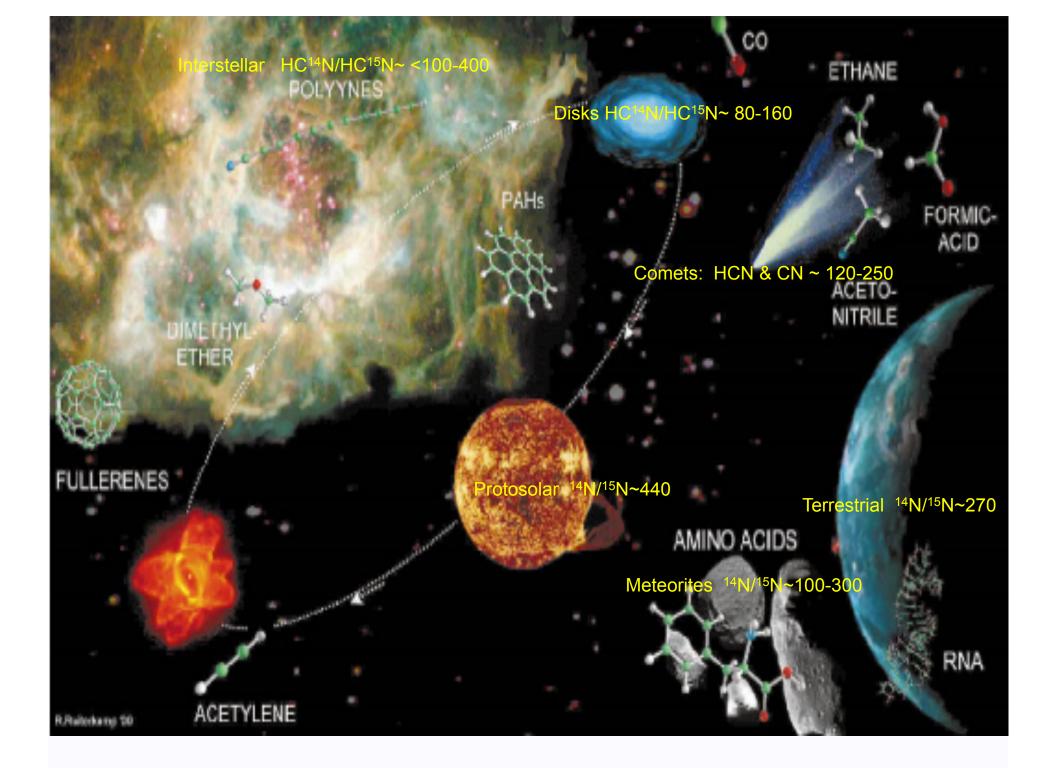

Primitive material = comets, asteroids, meteorites, IDPs Isotopic fractionation a remnant of cold interstellar chemistry ?

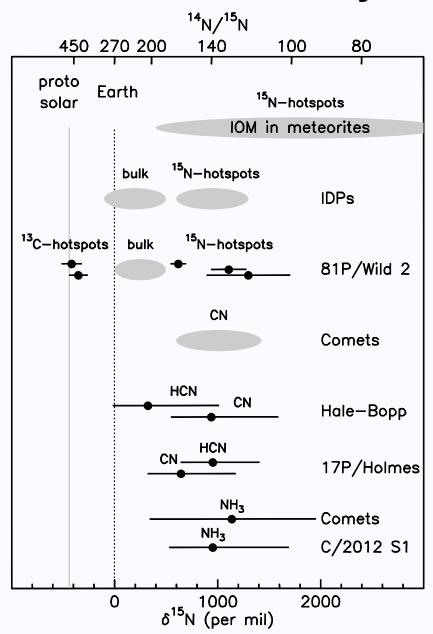

D/H IN THE SOLAR SYSTEM

Cometary water



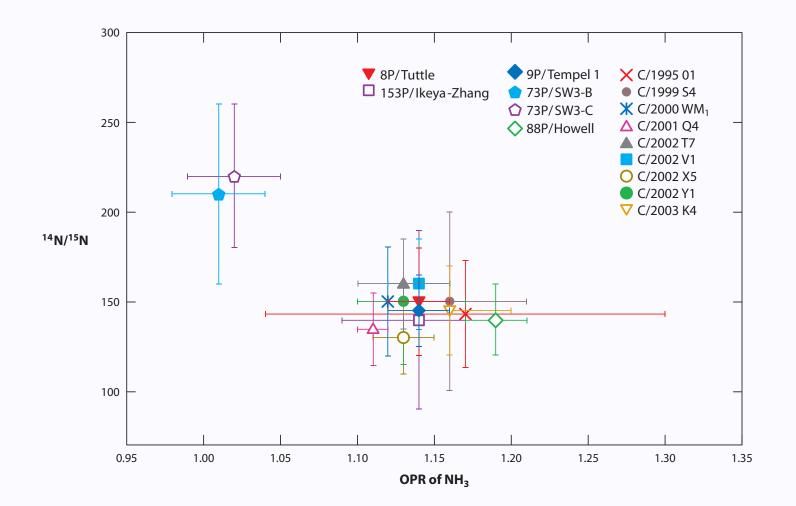
Adapted from Lis et al. (2013)


Processes affecting ISM fractionation in Proto-planetary Disks



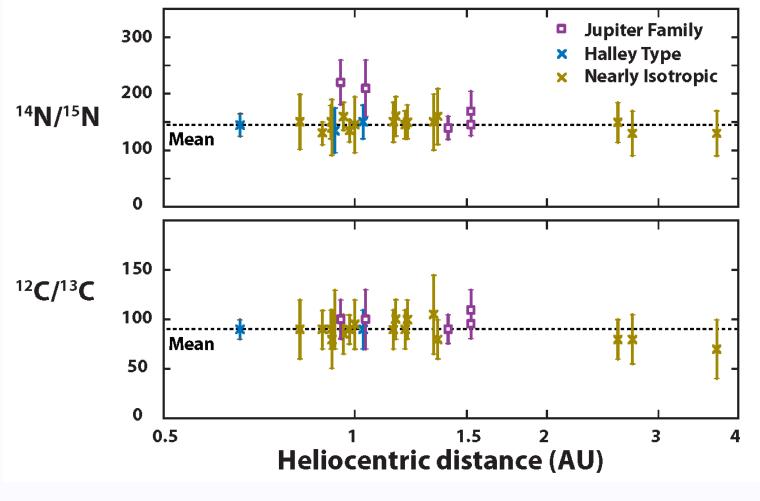
Nitrogen Isotopes in Solar System Objects

Fueri & Marty (2015)



¹⁴N/¹⁵N in the Solar System

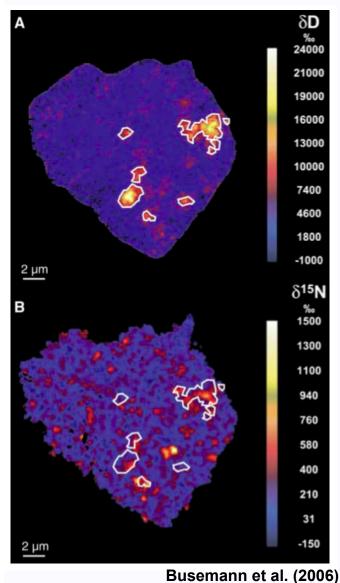
Bockelee-Morvan et al. (2015)


C¹⁴N/C¹⁵N in Comets: Oort Cloud & JFCs

Adapted from Shinnaka et al. (2011)

Isotopes of Nitrogen and Carbon in Comets: CN

Adapted from Manfroid et al. 2009



Nebular vs. Interstellar?

Levison et al. (2010): ~90% of Oort Cloud comets captured from stars in Sun's birth cluster?

¹⁵N Fractionation in Meteorites

PROTOSOLAR ¹⁴N/¹⁵N~440 TERRESTRIAL ¹⁴N/¹⁵N~270

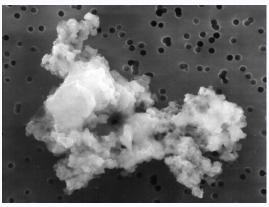
Meteorites & IDPs:

`hotspots':

¹⁴N/¹⁵N~50-170 + D-rich

D-rich + ¹⁵N-poor

¹⁵N-rich + D-poor


Duprat et al. (2014) Van Kooten et al. (2017)

Present in the Insoluble and Soluble Organic Material

Problems:

1) origin of the fractionation?

- 2) nature of the carrier(s):
 - nitrile or amine?
 - aliphatic or aromatic?

Ion-Molecule Fractionation Chemistry

Dense, starless/prestellar cores (n~10⁵ cm⁻³, T ~10K, CO depletion)

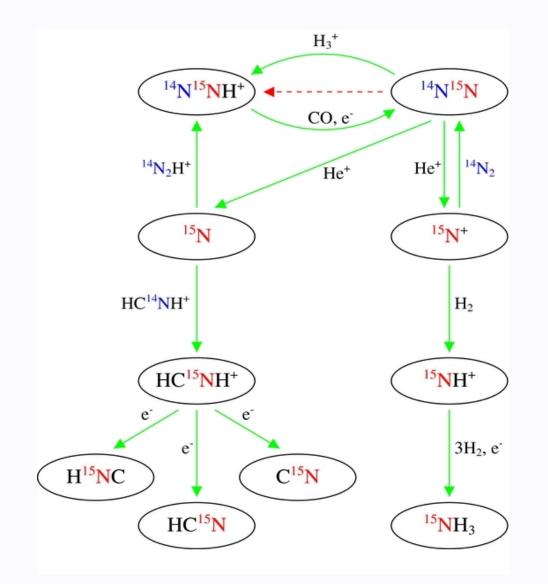
e.g. Barnard 68

(Lada et al. 2004)

 $\stackrel{15}{\sim} \mathrm{N} + \stackrel{14}{\sim} \mathrm{N}_{2}\mathrm{H}^{+} \rightleftharpoons \stackrel{14}{\sim} \mathrm{N} + \stackrel{15}{\sim} \mathrm{N}^{14}\mathrm{N}\mathrm{H}^{+}$ $\rightleftharpoons \stackrel{14}{\sim} \mathrm{N} + \stackrel{14}{\sim} \mathrm{N}^{15}\mathrm{N}\mathrm{H}^{+}$

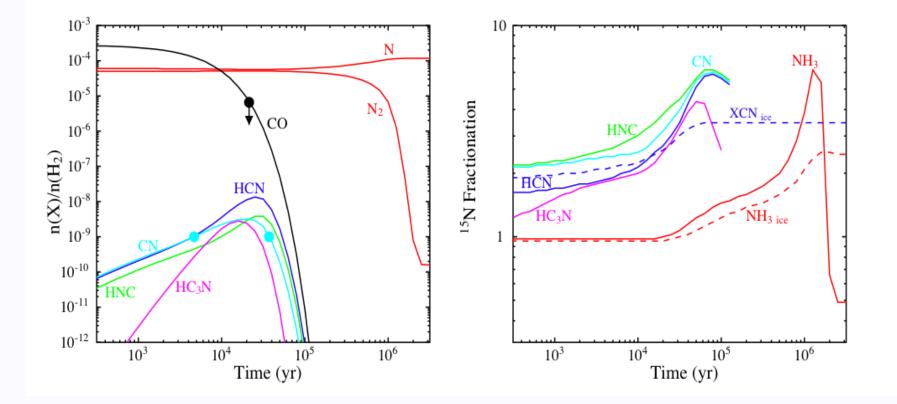
$$^{15}\mathrm{N}~+~\mathrm{HC}^{14}\mathrm{NH}^+~\rightleftharpoons~^{14}\mathrm{N}~+~\mathrm{HC}^{15}\mathrm{NH}^+$$

$$^{15}N^+ + ^{14}N_2 \rightleftharpoons ^{14}N^+ + ^{14}N^{15}N$$


$$^{15}N + C^{14}NC^+ \rightleftharpoons ^{14}N + C^{15}NC^+$$

Terzieva & Herbst (2000)

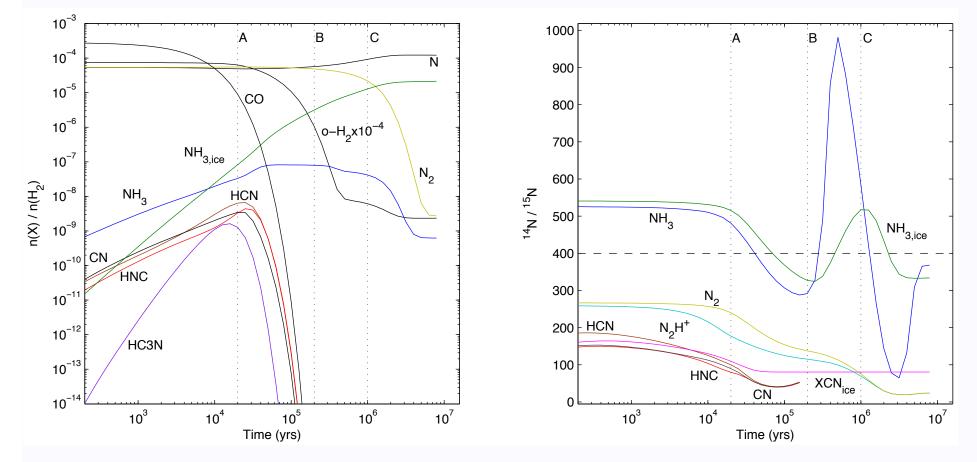
$$H_3^+ + HD \rightleftharpoons H_2D^+ + H_2 H_2D^+ + HD \rightleftharpoons D_2H^+ + H_2 D_2H^+ + HD \rightleftharpoons D_3^+ + H_2$$


Roberts et al. (2003)

Interstellar ¹⁵N Chemistry

Terzieva & Herbst (2000); Wirstrom et al. (2012)

¹⁵N Fractionation – Two Routes



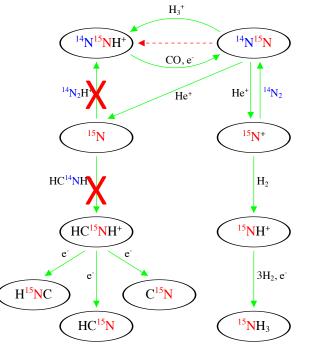
Requires high initial atomic N abundance and $N + CN \longrightarrow C + N_2$

Rodgers & Charnley (2008) Hily-Blant et al. (2013)

Interstellar Origin for Cometary ¹⁴N/¹⁵N Ratios ?

Necessary if ~90% of Oort Cloud comets from extrasolar systems (Levison et al. 2010) and/or outer Solar nebula shielded from cosmic rays (Cleeves et al. 2014).

Wirstroem et al. (2012)

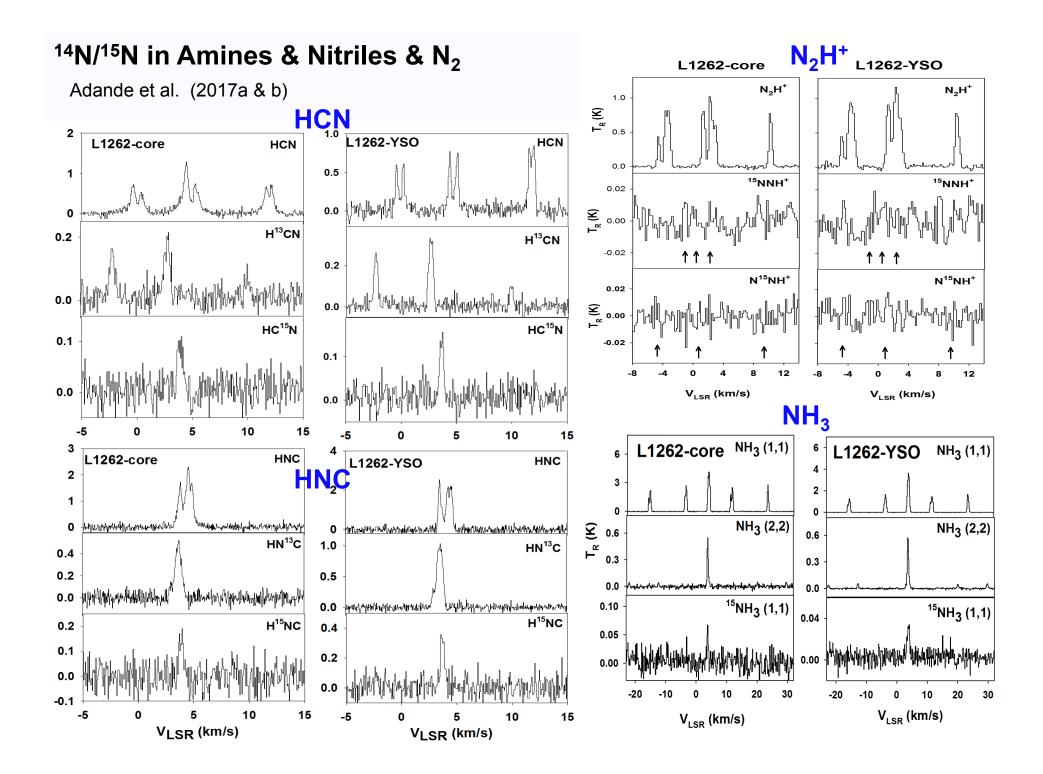

An ion-molecule origin for ¹⁴N/¹⁵N ratios in the ISM?

- ¹⁴N/¹⁵N nitrile ratios most enriched as observed in ISM and comets
- Low ¹⁵N enrichment/depletion in interstellar NH₃ possibly a time-dependent effect
- Depletion of ¹⁵N in N₂H⁺ a problem models only predict ISM enrichment
- Observed ¹⁵N enrichment in *cometary* NH₃ not reproduced
- Roueff et al. (2015) calculate barriers for the key processes:

 $\stackrel{15}{\sim}\mathrm{N} + \stackrel{14}{\sim}\mathrm{N}_{2}\mathrm{H}^{+} \rightleftharpoons \stackrel{14}{\sim}\mathrm{N} + \stackrel{15}{\sim}\mathrm{N}^{14}\mathrm{N}\mathrm{H}^{+}$ $\rightleftharpoons \stackrel{14}{\sim}\mathrm{N} + \stackrel{14}{\sim}\mathrm{N}^{15}\mathrm{N}\mathrm{H}^{+}$

 $^{15}N + HC^{14}NH^+ \rightleftharpoons ^{14}N + HC^{15}NH^+$

- Isotope-selective photodissociation of N₂ inefficient in dark cores (Heays et al. 2014); also in nebula?
- Models need to be re-evaluated (Wirstrom & Charnley 2017)


So, where are we?

 Growing database of cometary ¹⁴N/¹⁵N ratios in CN and NH₂ interspersed with a few HCN measurements

• Laboratory analyses demonstrating interesting correlations and anti-correlations in¹⁴N/¹⁵N ratios wrt to enrichments, potential carriers, and to other isotopes (D).

• Interstellar fractionation theory is in trouble.

 We have a recent surge in astronomical observations of ¹⁴N/ ¹⁵N ratios in clouds and disks. Multi-molecular studies may provide insights into fractionation mechanisms

¹⁴N/¹⁵N Ratios in Dark Clouds circa 2010

Source	Туре	NH ₃	N_2H^+	HCN	HNC	Reference
L1544	dark core		446±71	261	>27	1,2,3
				69-154		3
L1498	dark core			>813	> 90	4,3
				>75		3
L1521E	dark core			151±16		4
L1521F	dark core			>51	24-31	3,3
B1	protostar	334 ± 50				5
NGC 1333	protostar	344±173				5
		350-850				6
Cha-MMS1	protostar				135	7

Table 1: INTERSTELLLAR NITROGEN ISOTOPE RATIOS

(1) Bizzocchi et al. (2010) (2) Hily-Blant et al. (2010) (3) This work (4) Ikeda et al. (2002) (5) Lis et al. (2010) (6) Gerin et al. (2009) (7) Tennekes et al. (2006)

Observed ¹⁴N/¹⁵N Ratios in Molecular Clouds

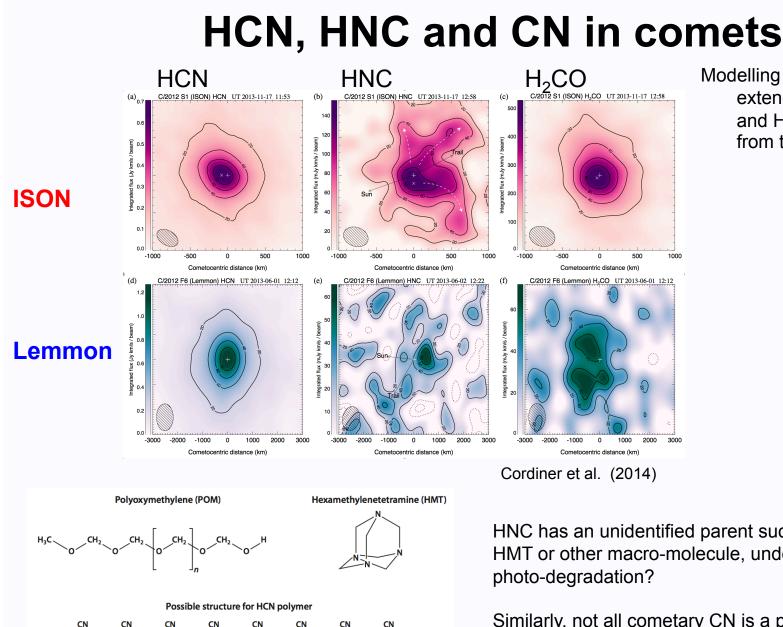

Source	Туре	NH ₃	$N_2H^{+\S}$	HCN	HNC	CN	Reference
L1544	dark core	>700	1000 ± 200	69-154	>27	500 ± 75	4,1,3,3,9
			1000 ± 200	140-360			1,2
L1498	dark core	$619{\pm}100$		>75	>90	$500{\pm}75$	3,3,3,9
				>813			5
L1521E	dark core			151 ± 16			5
L1521F	dark core	$539{\pm}118$		>51	24-31		3,3,3
L1262-core dark core		356±107	>450				3,3
			>450				3
L183	dark core	$530\pm^{570}_{180}$		140-250			4,2
NGC 1333-DCO ⁺	dark core	$360\pm^{260}_{110}$					4
NGC 1333-4A	Class 0 protostar	344±173					6
	1	>270					4
B1	Class 0 protostar	300	>600	165	75	240	10,10,10,10,9
	1	334 ± 50	400				6,10
L1689N	Class 0 protostar	$810\pm^{600}_{250}$					4
Cha-MMS1	Class 0 protostar				135		7
IRAS 16293A	Class 0 protostar			163±20	242 ± 32		13
R Cr A IRS7B	Class 0 protostar			287±36	259 ± 34		13
OMC-3 MMS6	Class 0 protostar			366±86	$460{\pm}65$		13
L1262-YSO	Class I protostar	453±247	>430				3,3
			>430				3
Several	Massive starless cores		65-1100			330-400	15,15
			180-1034#				15
Orion-KL Hot Core	Massive protostar	$170\pm^{140}_{80}$					16
Several	Massive protostars		190-1000			190-450	15,15
			180-1300				15
Several	Ultracompact HII regions		320-900			230-430	15,15
	. 0		350-700				15
Comets	JFC & Oort Cloud	127 [‡]		139±26		135-170 [†]	11,12,8

 TABLE 5

 INTERSTELLAR NITROGEN ISOTOPE RATIOS

References: (1) Bizzocchi et al. (2013); (2) Hily-Blant et al. (2013a); (3) Milam & Charnley (2012), Adande et al. (2016); (4) Gerin et al. (2009); (5) Ikeda et al. (2002); (6) Lis et al. (2010); (7) Tennekes et al. (2006); (8) Hutsemékers et al. (2008); (9) Hily-Blant et al. (2013b); (10) Daniel et al. (2013), lower limit is for the 15 NNH⁺ isotopologue ; (11) Rousselot et al. (2014); (12) Bockelée-Morvan et al. (2008); (13) Wampfler et al. (2014); (15) Fontani et al. (2015) ; (16) Hermsen et al. (1986)

[§] In each N₂H⁺ entry the uppermost value is for the ¹⁵NNH⁺ isotopologue. # Larger value is a lower limit. [†] This range can be taken as a surrogate for the HCN ratio, however in comets there may be additional sources of CN (see Mumma & Charnley 2011). Only 2 measurements have been made for in HCN itself, in OC comets Hale-Bopp and 17P/Holmes. [‡] 'Average' based on optical observations of NH₃ daughter molecule NH₂ in an ensemble of comets.

NH₂

NH₂

NH₂

NH₂

NC

NH₂

NH₂

NH₂

NH₂

NH₂

ŃH₂

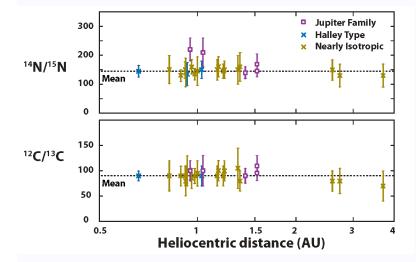
ŃH₂

 NH_2

NH₂

NH₂

NH₂


Modelling of data indicates extended sources of HNC and H₂CO ~ 300-2000 km from the nucleus

HNC has an unidentified parent such as HCN polymer, HMT or other macro-molecule, undergoing thermal or

Similarly, not all cometary CN is a photoproduct of HCN (see also Hily-Blant et al. 2017 for TW Hya disk)

Mumma & Charnley 2011

H¹³CN & ¹³CN in comets

 $^{12}C^{14}N/^{12}C^{15}N \sim 120-150$ $^{12}C^{14}N/^{13}C^{14}N \sim 90 \sim Solar$

Cometary $H^{12}C^{14}N/H^{12}C^{15}N \sim 120-150$

H¹³CN only detected in 3 comets (2 with Q~ 10^{31} s⁻¹):

H¹²C¹⁴N/H¹³C¹⁴N ~ 111 ... Hale-Bopp ~ 114 ... 17P/Holmes Bockelee-Morvan et al. (2015) ~ 109 ... Q2/Lovejoy (Biver et al. 2016)

Summary

- ¹⁴N/¹⁵N traces Solar System origins: ISM-comets-meteorites
- Theoretical mechanism for fractionation of ISM molecules is uncertain
- Observations can provide insight into possible fractionation processes

ISSUES

- $N_2 (N_2H^+)$: Not known in primitive matter & comets. What causes the large ¹⁴N/¹⁵N spread ~150-1600 in ISM? ¹⁵N₂H⁺ important ?
- $NH_3/^{15}NH_3 \sim 130$ in comets but ~300-600 in ISM. Why?
- HCN/HC¹⁵N : similar ratios in ISM, comets & disks (Guzman et al. 2017) but now showing a large spread in ISM (Zeng et al. 2017; Colzi et al. 2017)
- HNC/H¹⁵NC : less enriched than HCN in regions of massive SF
- CN/C¹⁵N : ~120-300 in comets; ~190-450 in ISM; ~323 in a disk (Hily-Blant et al. 2017)
- ISM: HCN, HNC & CN difficult to understand if HCNH⁺ involved
- Comets: 2 differently fractionated reservoirs for HCN and HNC+CN possible ...
- Primitive matter: nature of the ¹⁵N carrier ?

END

